UK

on,

bt

rig

f,.,.y

‘.‘.v P "X
Xl Rl d\
. S S0 ’ heS 1)
; > et )
i Y e t \
E bl N AL i
. PV P o
e
e

*B
KB‘ 3EZe UK ) ' ‘ . . | : —J.
523 . "'“7”" e ! AR 1.": S u.:;.,-:».‘.f,‘;;_‘zA_‘-v-_,'_-q.‘., g “

VOLUME 1

‘ Organised by
SPEARHEAD EXHIBITIONS ETD:

CONFERENCE PROCEEDINGS
:_‘ B (‘J@VHDMOSOKingsquAai-NewMalden

5 - 8 March 1996

\O
=)\
IS
=
&
ey
N
m
RS
M-
=
s
S
N
QO

L




REPORT DOCUMENTATION PAGE” g

Public reporting burden for this collection of information s estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of information, incdluding suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jetterson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1996 Proceedings

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Environmental Factors Affecting the Acoustic Resonant Frequency Due to Internal Job Order No. 71668006

Solitons Program Element No. 062435N
6. AUTHOR(S) . Project No. ’ .

Michael K. Broadhead and Robert L. Field Task No.

A Accession No.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION S "
REPORT NUMBER R
Naval Research Laboratory
NRL/PP/7173--96-0001

Center for Environmental Acoustics
Stennis Space Center, MS 39529-5004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES}) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, DC 20375-5320

11. SUPPLEMENTARY NOTES
Oceanology International 96 Conference Proceedings, Volume 1, 5-8 March 1996, Brighton, UK

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Nonlinear shallow water internal waves can enhance the bottom interaction of underwater sound. For a lossy ocean bottom,
this has the effect of an overall level change (in addition to fluctuations) in the transmission loss at preferred ("resonant”)
frequencies. The mechanism forthis effect is acoustic mode coupling due tothe depression of higher sound speed water into lower
speed water (at the pycnocline). It is also possible for this mechanism to induce a transfer of acoustic energy from below the
thermocline into the mixed layer, and we concentrate on this scenario. One of the environmental effects on the length scale of
the internal wave packet has been shown to be dissipation. The effect of this scale broadening on the resonant frequency is
studied. Through rigorous simulations, it is shown that this effect produces a positive shift in the frequency line structure. Also
offered is a simple model for this effect, based on mode coupling theory, that qualitatively predicts several features observed in

the simulations.

R I
s ovare IsERg

14. SUBJECT TERMS 15. NUMBER OF PAGES
acoustics, resonant frequency, internal solitons, internal waves, shallow water, lossy ocean 9
bottom, transmission loss, pycnocline, thermocline, scale broadening, and mode coupling 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z33-18
298-102




ENVIRONMENTAL FACTORS AFFECTING THE ACOUSTIC
RESONANT FREQUENCY DUE TO INTERNAL SOLITONS

Michael K. Broadhead and Robert L. Field
Research Physicists

Naval Research Laboratory
Stennis Space Center, MS 39529
U.S. A

Abstract

Nonlinear shallow water internal waves can enhance the bottom interaction of underwater
sound. For a lossy ocean bottom, this has the effect of an overall level change (in addition to
fluctuations) in the transmission loss at preferred ("resonant") frequencies. The mechanism for
this effect is acoustic mode coupling due to the depression of higher sound speed water into
lower speed water (at the pycnocline). It is also possible for this mechanism to induce a
transfer of acoustic energy from below the thermocline into the mixed layer, and we
concentrate on this scenario. One of the environmental effects on the length scale of the internal
wave packet has been shown to be dissipation. The effect of this scale broadening on the
resonant frequency is studied. Through rigorous simulations, it is shown that this effect
produces a positive shift in the frequency line structure. Also offered is a simple model for this
effect, based on mode coupling theory, that qualitatively predicts several features observed in
the simulations.

Introduction

Zhou, er al. [1] have shown that nonlinear shallow water internal waves (IW's) can enhance
the bottom interaction of underwater sound. For a lossy ocean bottom, this has the effect of an
overall level change (in addition to fluctuations) in the transmission loss at preferred
frequencies. These IW's can induce the coupling of lower-order to higher-order modes,
allowing more acoustic energy to penetrate into the lossy sediments.

Broadhead [2] also found that an IW induced transfer of acoustic energy from below the
thermocline into the mixed layer, in an idealized shallow water waveguide, could also occur.
Over the frequency range studied (900 Hz -- 1030 Hz), the energy transfer spectrum exhibited
a doublet resonant structure. At both resonant frequencies, mode coupling induced by the
presence of internal waves was responsible for the effect. Inclusion of dissipative effects on the
IW's revealed that the rate of wave packet spreading was reduced, and that soliton broadening
accompanied amplitude reduction. It was found that the latter effect produced a positive shift in
the resonant frequency structure.

In the present work, mode coupling theory has been used to produce a simple model of the
connection between acoustic resonance frequencies and internal wave length scale. This model,
which explicitly includes the various acoustical environmental parameters, qualitatively
correctly predicts two of the effects we observed in simulations; namely, 1) an increase in
acoustic resonant frequency with an increase in the IW length scale, and 2) prediction of a
multiplet line structure, due to a generally unique resonant frequency being associated with each
(m,n) mode pair.

Internal Wave Properties and Simulation

For summer conditions in shallow water, there is typically a mixed layer of warm, less
dense water overlaying a colder, denser layer. The density contrast is small (on the order of

107 g/cm3) and due mostly to temperature difference. However, because of the low
compressibility of water, this small difference is sufficient to support internal waves (interface
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waves along the pycnocline) of significant amplitude; usually on the order of tens of meters.
Perturbation theory for shallow water conditions (A >> H) leads to the KdV equation [3].
Here, H refers to total fluid thickness and A s the characteristic length scale of the IW's
(refer to Fig. 1). The wave amplitude must be small (but finite) with respect to H for
perturbation theory to be valid.

After Ostrovsky [3], we can write the KdV equation in the form appropriate for two-layer
conditions:

u +cu, +ouu +fu_ =0 1)

where u(x,t) is the displacement of the pycnocline from equilibrium level. The KdV
coefficients are defined as follows: c is the linear phase speed, « is the nonlinear coefficient, g
is the dispersion coefficient (refer to [3] for the full expressions for these quantities). If a
traveling wave solution is assumed the KdV equation can be directly integrated to yield the
sech-squared solitary wave solution:

u(x,t) = ugsech® x-TVt)’ 2)

where V is the soliton velocity, Ais the soliton half width,

Vac+ 3)
3 2
and
o128 5
au,

The solitons are waves of depression if p,h? < p a2, where P> p, are the densities of upper and
lower layers, respectively, and &, h, are layer thicknesses. For use in simulations, we chose
parameters for shallow water similar to Zhou's Yellow Sea case. The length scale of the main
solitary wave is ~150 m, with an amplitude of ~10 m.

Dissipative Mechanisms in Shallow Water I'Ws

To study the effects of a dynamic environment on the TW's in such a way that the
subsequent acoustical properties were affected, we were led to consider dissipative effects.
Shear-induced turbulent dissipation, frictional drag in the bottom boundary layer, radial
spreading, and coupling into other scales of wave motion (such as barotropic components) are
some of the major sources of energy loss from the solitary wave [4]. For example, the small
horizontal scales and large amplitudes of these short waves mean that both wave orbital
currents and current shear can become large, which can lead to instability and loss of wave
energy by turbulent dissipation, and hence to mixing of the water column. This can
subsequently lead to a thickening of the pycnocline [5]. Sandstrom and Elliot [6] have pointed
out that the IW- associated vertical mixing may act like a "nutrient pump," supplying nitrates to
the euphotic zone in the surface layer.

As mentioned, the shallow water, finite amplitude, 2-layer internal wave problem leads to
the KdV equation. One begins with the equations for inviscid, incompressible flow (Euler's
equation and continuity equation) and, through the perturbative method of multiple scales,
arrives, to first order nonlinearity, at the KdV equation. If we include viscous effects, then we
need to consider the Navier-Stokes equations, which can be written in our case as
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p[d, +ueVu=-Vp+uVu, 5)

and where u is viscosity and the vector u is the fluid particle velocity.

These equations are different from the inviscid case by the addition of a dissipative (or
diffusive) term uV>u. For our purposes, this term and the convective term (u + V)u, and their
relative interplay, will be the most essential features we consider. The simplest 1-D model
problem for representing convection/diffusion problems, or from our perspective, nonlinear
dissipative wave phenomena, is Burgers equation [7]

U +uu = uu 6)

where we retain p to indicate the dissipation coefficient.

Upon comparing the KdV and Burgers equations, we note that, in the former case, the
dissipative term is missing. In the latter case the dispersive term is missing. A natural
generalization to weakly nonlinear, dispersive, dissipative systems is to consider the model
problem:

U +uu + Vi = uu 7

which is called the KdVB equation (see Ref. [7] for a bibliography of papers concerning this
equation).

We proceed by considering the numerical solution of Eq. 7), where a sech’(x) function is
used for an initial condition. Refer to Broadhead [2] for algorithmic details. In Fig. 2 we show
the dissipative effect on a single solitary wave, where we overlay the first and last pulse, and
where the latter has been scaled and shifted for comparison purposes. The effect we primarily
want to point out is the pulse broadening. In order to connect these simulations to physical
scales, we assume an IW with a 9 m amplitude, with 4=150 m, Ap=4 kg/m3, and an energy
of 6.35 x 10° J/m. In order for the IW to dissipate to an amplitude of 5.6 m, which is the
equivalent percentage loss we found in the KdVB simulation above, we need an energy loss of
3.87 x 103 J/m. If we assume that our solitary wave is traveling at an average speed of about
0.5 m/s, over a distance of ~10 km, and use a dissipation rate of 5 x 102 W/m?2, then the
desired amplitude reduction will occur over a time interval of about 5 hours.

Acoustical Simulations

For linear acoustic wave propagation due to a harmonic point source in an azimuthally
symmetric ocean waveguide, the appropriate wave equation governing the excess pressure p is
the two-dimensional Helmholtz equation

2
P9 L@) i(lg"g) w _ 8z -25)6(r)
rz?r(p or) TPz p oz c2(rz)P_ 2ar 9)

where, in general, the density p = p(r,z) is a function of range and depth, as is ¢, the sound
speed. The point source, located at the r-origin at depth z,, has harmonic time dependence
exp(-iwt), where w = 2af, and f is frequency in Hz. The normal mode model KRAKENC [8]
was used to obtain one-way (outgoing) solutions to Eq. 9) for the environmental parameters
given in Fig. 1.
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Two methods were employed: 1) adiabatic normal modes and 2) one-way coupled modes.
The adiabatic normal mode solution is valid when the environmental parameters change
sufficiently slowly, i. e., when mode coupling can be ignored. When mode coupling cannot be
ignored, as is the case in examples shown later, a coupled mode approach can be used [8]. The
environment is approximated by subdividing it into range-independent segments. Boundary
conditions are then used to match the solutions at adjoining segment interfaces (i. e., continuity
of pressure and radial particle velocity, respectively). Also needed are the source condition
(r=0) and the Sommerfeld radiation condition (r— ). This leads to a system of equations for
the normal mode amplitudes, which can then be further simplified to a one-way (no
backscattering) coupled mode formulation that allows an efficient range marching
implementation [8]. In KRAKENC the full complex eigenvalue problem is solved. In order to
include continuum approximations the leaky-mode approximation is utilized. These terms can
be important when mode-coupling re-stimulates continuum contributions at potentially large
source-to-receiver ranges r.

In Fig. 1, the acoustic environmental parameters are given, as well as the displacement of
the thermocline that simulates the presence of a solitary internal wave. The given environment
was input into KRAKENC and TL calculations were performed at a number of frequencies.
We noticed various interesting phenomena, but concentrated on what occurred in the frequency
band 900 Hz -- 1030 Hz.

Figure 3 shows the result of this calculation for a source depth of 25 m, which is below the
thermocline. The topmost figure, represents the normal mode solution in the wave guide in the
absence of an IW packet. When the IW is present, we have two choices of range dependent
calculation with our model: 1) adiabatic normal modes and 2) coupled modes, which are
displayed in the middle and bottom figures, respectively.

The propagation feature we call to the reader’s attention is that, for this scenario, the coupled
mode solution predicts an enhanced transfer of acoustic energy from below the thermocline
into the mixed layer (ML) at least for propagation frequencies around 940 Hz and 1005 Hz.
The fact that this phenomenon is missing in the adiabatic modes calculation is initial evidence
that the IW is inducing mode coupling, which is, in tum, responsible for the energy

transfer phenomenon. We should also point out the similarity of the adiabatic normal mode
and range-independent solutions for the cases presented. In Fig. 4, we take a more detailed look
at the calculations by considering a horizontal slice through the 2-D TL surfaces in Fig. 3. The
energy transfer already mentioned is evident.

In Fig. 5, we display the results of calculations for TL vs. frequency, where the dashed
curve is produced by differencing the TL for coupled modes and the range-independent case.
We observe a doublet resonance structure at 940 Hz and 1005 Hz. We are now able to pose a
specific question as regards the effects of dissipation on the acoustic resonance structure we
have identified: how would the peak broadening due to dissipation affect the acoustical resonant
structure shown by the dashed curve. Using a new acoustical environment in which we have
approximately doubled the IW length scale, we repeat the calculations to produce the new
resonance peaks shown by the solid curve. Note, the structure, slightly altered, is shifted up in
frequency by about 25 Hz.

Mode Coupling Analysis

To study the nature of the mode coupling that is playing a role in the propagation we
consider the modal amplitudes, defined by

a=U"p 10)
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where p is a vector of pressures at a fixed range, a is a vector of modal amplitudes and U is a
matrix whose columns are the appropriate (local) mode functions.

In Fig. 6, we display the modal amplitude calculated from the vertical pressure at the 1500
m range for 940 Hz. There are several points to note: 1) three modes, modes 1, 3, and 5,
dominate the propagation in the range-independent case, and 2) these three modes carry less
energy when the IW is present (and mode coupling is allowed), whereas the higher modes are
enhanced (especially mode 8). This suggests a coupling of modes 1, 3, and/or 5 to at least
mode 8. Further evidence of this can be seen in Fig. 7 where we display the modes in question.
Modes 1, 3, and 5 are largely confined to the wave guide region between the ML and the water
bottom. However, mode 8, which is stimulated by the IW at the expense of the other three, has
a large component in the ML.

Following a procedure analogous to that used by Zhou et al. {2}, we can make use of mode
coupling theory to tie the characteristic spatial scales of the IW packets to the normal mode
spatial scales represented by horizontal wave numbers. This theory predicts significant
coupling between modes that obey the relation

k,

= K = K, 11)
where k_ and k, are the horizontal wave numbers corresponding to the mth and nth modes,
and k is the wave number corresponding to the appropriate length scale for an internal wave.
By eye, we chose two length scales that bracketed the main solitary wave shown in Fig. 1,
shown in Fig. 8. The scales correspond to the following wave number interval:
[£i50m>%s0m ) = [0.042,0.105). Horizontal wave numbers obtained from KRAKENC for modes 1,
3,5 and 8 obey: Ak g ~0.084, Akyg = 0.071, and Ak, g ~ 0.045, which fall within the given wave
number range for the IW. This indicates a general consistency with mode coupling theory for
our main solitary wave. It also confirms the role that coupling of modes 1, 3, and 5 to mode 8
plays in the effect.

Simple Model for Predicting Resonance Properties

Along with the relation A, =27/k,

int

and Eq. 11), we can write
A = 27f ke (02) - K, (@) - 12)

Using some means of computing various (m,n) horizontal wave number pairs, we can
determine the associated resonant frequency w, for a given length scale, based on the

particular mode coupling theory implied by Eq. 11). The simplest case is for a rigid bottom,
isovelocity waveguide, which provides an analytical relation:

kf: = (%)2 - ([m - %]%)Z, m=12,..N 13)

Curves produced with these albeit simple assumptions are shown in Fig. 9 for various mode
pairs. We should only interpret these curves qualitatively, and only in so far as they agree with
what we have already learned from simulations. It should be pointed out that the curves predict
two features we have already noted: 1) an increase in the resonant frequencies for an increase in
the IW length scale (at least for our present scenario), and 2) a multiplet line structure, since, in
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general, unique frequencies are associated with different (m,n) pairs (although there is some
degeneracy and fine structure).

Discussion and Conclusions

In the present work, mode coupling theory has been use to produce a simple model of the
connection between acoustic resonance frequencies and internal wave length scale. This model,
which explicitly includes several acoustical environmental parameters, qualitatively correctly
predicts two of the effects we observed so far in simulations: namely, 1) an increase in acoustic
resonant frequency with an increase in the IW length scale, and 2) prediction of a multiplet line
structure due to a generally unique frequency being associated with each (m,n) mode pair. This
result should, at best, be thought of as only a first crude attempt at a general approach to
solitary internal wave acoustic resonance spectroscopy. We are currently refining the analysis,
and of course, all such theories and models are ultimately required to be validated by
experimental measurements. Such measurement programs are currently under way, one of
which the authors are participating in.
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